Chapter 8

NOBLE GASES

M.F.A.Dove

8.1	XENON (O)	471
8.2	KRYPTON(II) AND XENON(II)	471
В.3	XENON(IV) AND XENON(VI)	474
REFERENCES		475

8.1 XENON(0)

The sensitivity of the nuclear magnetic shielding of the ¹²⁹Xe nucleus to its physical environment makes it possible to distinguish between atoms in small and large clathrate deuteriohydrate cages. ¹ The occupancy ratio of the two cages is more in favour of the larger one than is predicted by existing models of guest-host interactions in such hydrates.

8.2 KRYPTON (II) AND XENON(II)

Solutions of KrF $_2$ and MoOF $_4$ in SO $_2$ ClF are stable only below O°C and Holloway and Schrobilgen have successfully characterised KrF $_2$ ·nMoOF $_4$ F-bridged adducts (n = 1,2 or 3) in these solutions by 19 F n.m.r. studies at -121°C. These adducts are significantly more stable in solution than the WOF $_4$ analogues which decompose even at -100°C according to equation (1): the ν -fluorine bridged

$$\text{KrF}_2 + \text{WOF}_4 \longrightarrow \text{Kr} + \frac{1}{2}\text{O}_2 + \text{WF}_6$$
 ...(1)

complex KrF₂.WOF₄ was characterised by ¹⁹F n.m.r. spectroscopy, however there was no evidence for 1:2 or higher complexes. The general instability of the W complexes and especially of the 1:2 and higher complexes was rationalised in terms of equilibrium (2),

$$F-Kr--F \longrightarrow F-Kr-O \longrightarrow F_KM$$
 (2)

0010-8545/83/\$01.50 © 1983 Elsevier Science Publishers B.V.

which has a well established analogue in xenon(II) chemistry. Thus the authors concluded that Kr-O bonded systems are unlikely. Indeed, all attempts by Jacob et al. 3 to generate Kr(OTeF $_5$) $_2$ from B(OTeF $_5$) $_3$ or HOTeF $_5$ and KrF $_2$ have failed: however the formation of BF $_3$ and F $_5$ TeOOTeF $_5$ from B(OTeF $_5$) $_3$ even at -196°C can be interpreted as evidence for the intermediacy of a Kr-O-TeF $_5$ derivative. The Raman spectra of the solid adducts with MoOF $_4$ and WOF $_4$ were recorded at -108°C (XeF $_2$ adducts) and -196°C (KrF $_2$ adducts) respectively and assignments were presented. 2

A polymeric xenon compound, which is probably oxygen-bonded, has been reported: 4 it was prepared by reaction (3) carried out

$$XeF_2 + cis-(HO)_2TeF_4 \longrightarrow \frac{1}{n}(-Xe-OTeF_4O-)_n + 2HF$$
 ...(3)

in ${\rm C_4F_9SO_2F}$ at ${\rm 20^{\circ}C}$. The new xenon(II) compound ${\rm Xe\,(N(SO_2F)_2)_2}$ has been obtained as one of the products of reaction of ${\rm XeF_2}$ with ${\rm HN\,(SO_2F)_2}$ at low temperatures. The ratio of the new compound to ${\rm FXeN\,(SO_2F)_2}$ in the mixture was controlled by the reaction ratio. Thus a 1:2 molar ratio of reagents yielded 20% of the bis compound based on ${\rm XeF_2}$. The thermal decomposition of the bis compound even at ${\rm O^{\circ}}$ in ${\rm CFCl_3}$ gives rise to the free radical ${\rm N\,(SO_2F)_2}$ (q.v.). The action of ${\rm XeF_2}$ on other nitrogen compounds was also investigated; ${\rm HNF_2}$ gave ${\rm N_2F_4}$ + HF + Xe, perfluorosuccinimide underwent extensive degradation whereas ${\rm (CF_3)_2NH}$ and ${\rm (CF_3)_2C=NH}$ were inert.

The previously reported XeOTeF $_5^+$ cation has been more fully characterised by Raman spectroscopy of its AsF $_6^-$ and Sb $_2$ F $_{11}^-$ salts and by multinuclear (19 F, 125 Te and 129 Xe) n.m.r. spectroscopy. Reaction of the AsF $_6^-$ salt with BrF $_5$ has been shown to yield the novel cations FXeFXeOTeF $_5^+$ and XeF $_2$.BrOF $_2^+$ via the series of reactions (4)-(6). In addition evidence was also

$$2XeOTeF_5^{+}AsF_6^{-} + BrF_5 \xrightarrow{-48^{\circ}C} TeF_6 + XeF_2XeOTeF_5^{+}AsF_6^{-} + BrOF_2^{+}AsF_6^{-} \dots (4)$$

$$XeF_2XeOTeF_5^+AsF_6^- + BrF_5^- -48^{\circ}C$$
 $TeF_6 + Xe_2F_3^+AsF_6^- + BrOF_3$... (5)

$$Xe_2F_3^+AsF_6^- + BroF_3^+ + BroF_2^+AsF_6^- \xrightarrow{RT} 2[XeF_2.BroF_2^+AsF_6^-] \dots (6)$$

provided for the formation of the $XeOSO_{2}F^{+}$ cation in reaction (7).

$$XeOTeF_5^+$$
 + $HOSO_2F \rightleftharpoons HOTeF_5$ + $XeOSO_2F^+$...(7)

The synthesis of 18 F-labelled XeF $_2$ has been investigated by Schrobilgen et al: 7 neutron irradiated 6 Li $_2$ CO $_3$ was converted to essentially anhydrous HF and exchange between this and XeF $_2$ was allowed to take place. The authors forsee that $[^{18}$ F]XeF $_2$ will become a highly useful intermediate for the preparation of a variety of medically important 18 F-labelled compounds.

Xenon difluoride adds efficiently at room temperature to hexafluoroisopropylideneimidosulphenyl isocyanate, $(CF_3)_2C=N-S-N=C=0$, in a 1,3 manner to form $(CF_3)_2CFN=SF(NCO)$ and in a 1,5 manner to form $(CF_3)_2CFN=S=N-COF$, in the presence of BF₃ the principal unfragmented product is the S(VI) compound $(CF_3)_2CFN=SF_2=NCOF$. The XeF₂-fluorination of 2-bromo-4,5-dimethyphenol has been investigated: the yield of monofluorinated products was higher in the presence of BF₃-etherate than with HF or CF_3CO_2H .

The reactions of excess XeF_2 with some ammonium hexafluorometallates, $(NH_4)_2MF_6$ (M = Ti, Zr or Hf) and $(NH_4)_3M'F_6$ (M' = V, Cr, Mn or Fe) and with NH_4MnF_3 have been described by Slivnik et al. ¹⁰ Reactions (8)-(10) are representative of some of the processes which occurred. Xenon(II) fluoride doped polyacetylene

$$(NH_4)_2 TiF_6 \xrightarrow{180^{\circ}C} XeF_2.TiF_4 \dots (8)$$

$$(NH_4)_3VF_6 \xrightarrow{70^{\circ}C} (NH_4)_3VF_8 \dots (9)$$

$$NH_4MnF_3 \xrightarrow{60^{O}C} NH_4MnF_4 \dots (10)$$

film shows an enhanced electrical conductivity $(70\Omega^{-1} \text{cm}^{-1})$; ¹¹ this decreases to less than $10^{-4}\Omega^{-1} \text{cm}^{-1}$ when the volatiles are removed at which stage the composition corresponds to $[\text{CH}_{0.90}(\text{XeF}_2)_{0.045}\text{F}_{0.36}]_{\text{x}}$.

8.3 XENON(IV) AND XENON(VI)

Details of the synthesis and handling problems of $Xe(OTeF_5)_4$, $Xe(OTeF_5)_6$ and $XeO(OTeF_5)_4$ have appeared. From X-ray powder diffraction studies it has been inferred that $Xe(OTeF_5)_6$ is monomeric since it is isostructural and nearly isodimensional with $Te(OTeF_5)_6$. Evidence for the existence of even less stable $XeF_n(OTeF_5)_{6-n}$ was also presented. However a mixture of $XeOF_4$ and $XeO(OTeF_5)_4$ were shown to undergo ligand exchange readily to form a stable mixture of all possible intermediates including both possible isomers of $XeOF_2(OTeF_5)_7$.

The controlled reaction between $\mathrm{NH_4MnF_3}$ and $\mathrm{XeF_6}$, initially at 0°C and then at 60°C, to complete the processes, has yielded a solid product containing $\mathrm{NH_4}^+$, Xe and $\mathrm{Mn(IV)}$. Neither $\mathrm{N_2}$ nor nitrogen fluorides were detectable during the reaction. On the basis of chemical analysis, magnetic susceptibility measurements and vibrational spectroscopy the solid reaction product was formulated as $\mathrm{NH_4}^+\mathrm{XeF_5}^+\mathrm{MnF_6}^{2-}$. Two new compounds have been synthesised from the $\mathrm{XeF_6}^-\mathrm{VF_5}$ system: 13 these, the 1:1 and 1:2 compounds, are in addition to the already known 2:1 compound. From their Raman spectra it was concluded that ionic character decreases with increasing $\mathrm{VF_5}$ content; thus the 2:1 compound (m.p. 97°C) is formulated as $\mathrm{Xe_2F_{11}}^+\mathrm{VF_6}^-$.

Polyacetylene film inflames on contact with liquid XeOF₄: ¹¹ exposure to the vapour, 1.5 Torr, causes the electrical conductivity to rise significantly (to 500^{-1} cm⁻¹ for the composition $[CH(XeOF_4)_{0.025}]_v$).

REFERENCES

- J.A.Ripmeester and D.W.Davidson, J. Mol. Struct., 75(1981)67.
- J.H. Holloway and G.J. Schrobilgen, Inorg. Chem., 20(1981)3363.
- E.Jacob, D.Lentz, K.Seppelt and A.Simon, Z. Anorg. Allg. Chem., 472(1981)7.
- B. Fötter, D. Lentz, H. Fritzkow and K. Seppelt, Angew. Chem. Int. Ed. Engl., 20(1981)1036.
- D.D.DesMarteau, R.D.LeBlond, S.F.Hossain and D.Nothe, 5
- J. Am. Chem. Soc., 103(1981)7734. N.Keller and G.J.Schrobilgen, Inorg. Chem., 20(1981)2118. G.J.Schrobilgen, G.Firnau, R.Chirakal and E.S.Garnett,
- J. Chem. Soc. Chem. Commun., (1981)198.
 H. Steinbeisser and R. Mews, J. Fluorine Chem., 17(1981)505.
- H.Kondstaal and C.Olieman, Rec., 100(1981)246. J.Slivnik, B.Družina and B.Žemva, Z. Naturforsch., 36b(1981) 1457.
- H.Selig, A.Pron, M.A.Druy, A.G.McDiarmid and A.J.Heeger, J. Chem. Soc. Chem. Commun., (1981) 1288. B.Žemva and J.Slivnik, J. Fluorine Chem., 17(1981) 375. A.Jesih, B.Žemva and J.Slivnik, J. Fluorine Chem., 19(1982) 221.
- 13